Optimizing Shape Design with Distributed Parallel Genetic Programming on GPUs

نویسندگان

  • Simon Harding
  • Wolfgang Banzhaf
چکیده

Optimized shape design is used for such applications as wing design in aircraft, hull design in ships, and more generally rotor optimization in turbomachinery such as that of aircraft, ships, and wind turbines. We present work on optimized shape design using a technique from the area of Genetic Programming, self-modifying Cartesian Genetic Programming (SMCGP), to evolve shapes with specific criteria, such as minimized drag or maximized lift. This technique is well suited for a distributed parallel system to increase efficiency. Fitness evaluation of the genetic programming technique is accomplished through a custom implementation of a fluid dynamics solver running on graphics processing units (GPUs). Solving fluid dynamics systems is a computationally expensive task and requires optimization in order for the evolution to complete in a practical period of time. In this chapter, we shall describe both the SMCGP technique and the GPU fluid dynamics solver that together provide a robust and efficient shape design system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating high-order WENO schemes using two heterogeneous GPUs

A double-GPU code is developed to accelerate WENO schemes. The test problem is a compressible viscous flow. The convective terms are discretized using third- to ninth-order WENO schemes and the viscous terms are discretized by the standard fourth-order central scheme. The code written in CUDA programming language is developed by modifying a single-GPU code. The OpenMP library is used for parall...

متن کامل

Exploiting GPUs in Solving (Distributed) Constraint Optimization Problems with Dynamic Programming

This paper proposes the design and implementation of a dynamic programming based algorithm for (distributed) constraint optimization, which exploits modern massively parallel architectures, such as those found in modern Graphical Processing Units (GPUs). The paper studies the proposed algorithm in both centralized and distributed optimization contexts. The experimental analysis, performed on un...

متن کامل

Dexterous Workspace Shape and Size Optimization of Tricept Parallel Manipulator

This work intends to deal with the optimal kinematic synthesis problem of Tricept parallel manipulator. Observing that cuboid workspaces are desirable for most machines, we use the concept of effective inscribed cuboid workspace, which reflects requirements on the workspace shape, volume and quality, simultaneously. The effectiveness of a workspace is characterized by the dexterity of the manip...

متن کامل

Optimizing Sparse Matrix-vector Multiplication Based on Gpu

In recent years, Graphics Processing Units(GPUs) have attracted the attention of many application developers as powerful massively parallel system. Computer Unified Device Architecture (CUDA) as a general purpose parallel computing architecture makes GPUs an appealing choice to solve many complex computational problems in a more efficient way. Sparse Matrix-vector Multiplication(SpMV) algorithm...

متن کامل

Fuzzy Programming for Parallel Machines Scheduling: Minimizing Weighted Tardiness/Earliness and Flow Time through Genetic Algorithm

Appropriate scheduling and sequencing of tasks on machines is one of the basic and significant problems that a shop or a factory manager encounters; this is why in recent decades extensive studies have been done on scheduling issues. One type of scheduling problems is just-in-time (JIT) scheduling and in this area, motivated by JIT manufacturing, this study investigates a mathematical model for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012